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SECTION-A

Answer all questions:





(10 x 2=20)

1. Define an order – complete set and give an example of it.

2. When do you say that two sets are similar?

3. Define discrete metric space.

4. Give an example of a perfect set in real numbers.

5. Define open map and closed map.

6. When do you say that a function is uniformly continuous?

7. If a function f is differentiable at c, show that it is continuous.

8. Define “total variation” of a function f on [a,b].

9. Give an example of a sequence {an}whose lim inf and lim Sup exist, but the sequence is not convergent.

10. Give an example of a function which is not Riemann Stieltjes integrable.

SECTION-B

Answer any five questions:





(5 x 8=40)

11. Let a,b be two integers such that (a,b)=d. Show that there exists integers 
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12. Show that the set of all real numbers is uncountable.

13. Let E be a subset of a metric space X. Show that 
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 is the smallest closed set containing E.

14. State and prove Heire Borel theorem.

15. Show that in a metric space every convergent sequence is Cauchy, but not conversely.

16. Let f, g be differentiable at 
[image: image4.wmf](,),

cab

Î

Show that f  g  is differentiable at c and if 
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is also differentiable at c.

17. State and prove Lagrange’s mean valve theorem.

18. Suppose {an}is a real sequence. Show that lim Supan=l if and only if for every 
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(i) there exists a positive integer N such that 
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for all 
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 and

(ii) given any positive integer m, there exists an integer 
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such that 
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SECTION-C

Answer any two questions:






(2 x 20=40)


19. (a) State and prove Minkowski’s inequality.

(b) Show that there is a rational number between any two distinct real numbers.

(c) If 
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show that e is irrational.

20. (a) If F is a family of open intervals that covers a closed interval [a,b], show that a finite sub family of F also covers [a,b].

(b) Let S(Rn. If every infinite subset of S has an accumulation point in S, show that S is closed and bounded.

21.  (a) Let (X,d1), (Y, d2) be metric spaces and 
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. Show that f is continuous at 
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if and only if for every sequence 
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in X that converges to 
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(b) State and prove Bolzano theorem.

22. (a) State and prove Taylor’s theorem.

(b) Suppose 
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on [a,b]. Show that 
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